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Allltract-When low speed objects impact composite lamiDated plates delamillation may result. UDder in
plane compression such delaminations may buckle and tend to eDlarp the delamioated area which can lead to
loss of 1I0bal plate stability.

This process is modelled here in a first attempt by a delaminatina beam-eolumll wherein the local
delamination IfOwth. stability and arrest are IOverned by a fracture mecbanics·based ellerlf release rate
criterion.

NOTATION
A] mldspane transverse deftection in Section 3

D1 12(f!JIl}--bendina riaidity in "jth" section
E Youna's modulus
G strain energy release rate (s.u.r.) per unit area
G GI{EtSL-4(1- vl}-I}
a.. .. G,-s.e.r.r. associated with models 4 ••• t

It delamination thickness
h hit
L total length of plate
L delamination length
I ilL
I, (L -/)/2./2" I) .. I
I· lI{hn- '14}

10 initial film length
111.1. sianiflcant film length

It lo/{hn- I14}./X" 3.376./S= 2.221
I.•. I.. delamination lenath wbleh maximize G.. G. respect

I,. t,.IL, I,... It.IL
11 total load in "jth" section
1 tolal plate thickness
t, t. '2 " I-It. I)" It
U strain eneraY

U" Ulit UIII strain enCfIY for three different states
fj U/{Et'L-](1- ,2r l }

III iV(PJD/). j .. 1,2.3 normalized tolalload in "lth" section
ro enerl)' required to produce a unit of new surface

n rO/{2(1~1'2)}
6 end detection of delamination

£0 loading strain

" it. j .. 1,2.3 midplane (membrane) strain in "ith" section

fL 3(1~JI1) (I)' bueklina strain of plate

fc,. 3(1~JIl} (~r buckling strain of delamination

io fo/fL' ~ .. elfL. j -I. 2. 3. II:' =f.,lfL = (iilT?
fa (1- .,J)£oO-I12

fall 0.866, fa. '"' 1.000
'I II) - ff expansion parameter
B end rotation of delamination
i BUt
K I-h+hi
I' Poisson's ratio
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I. INTRODUCTION
Fiber reinforced plastics and, in particular, graphite fiber composite materials enjoy a definite
strength to weight advantage over many standard engineering materials used in weight critical
applications. This assessment must, however, be made with respect to applications where the
primary stresses are aligned with the fiber direction such as the extension (tension or
compression) or bending of a thin plate where stresses normal to the plane of the plate are
small. If such a plate is subjected to impact, considerable damage can be caused since the
cohesive strength of the plate through its thickness is quite low. This in turn can lead to
degradation of the extensional or bending strength of the plate[l-S].

The mechanism of this strength degradation has been the subject of a recent
investigation[6]. Although the details of the initial degradation process are poorly understood, it
is believed that the strength degradation under compressive in-plane loading is the result of
coupled delamination and delamination buckling.

An experimental investigation into the failure mechanism using high-speed photography [7]
has shown that the failure process can be divided roughly into two phases. In the first phase the
plate is impacted and the resultins. response causes interlaminar separation. The size of this
damage area is a function of the impactor parameters and the plate material, lay-up, etc,[6]. For
the present discussion it will be assumed that the dimension of the damage area is large
compared to the laminate thickness but small compared with the plate size.

In the second phase the damage area spreads to the undamaged area of the plate through a
combination of laminate buckling and further delamination. It is this failure phase with wbich
we are concerned in the following development. In order to elucidate the dominant physical
phenomena in a readily tractable analytical manner it appears prudent to deal first with a
geometrically simpler situation than the full plate problem illustrated in Fig. 1: the treatment of
that problem depends heavily on numerical computations. Instead we shall deal bere only with
the one dimensional plate analogue represented by the cross section in Fig. I which geometry
and loading are considered to be invariant along the coordinate normal to the plane of the
figure. In the subsequent analysis which is condensed from references [8-11] we shall start from
the assumption that a delamination exists in the plate. The latter may be initially unloaded or
under an in-plane compressive load when the delamination appears. In eitber case the analysis
will study the growth (under load) of the damage area. Quasistatic conditions will be assumed
and the analysis will draw on the theory of ordinary beams as well as a rate indepen4ent
fracture criterion based on the energy release rate.

Growth of the delamination is assumed to occur in its own plane in keeping with the
laminate character of layered composites. Yet, for simplicity reasons the properties of the plate
are assumed homogeneous, isotropic, and linearly elastic. We note, however, that impact
damage in a fiber composite of, say, quasi-isotropic and symmetric lay-up generates in general
two or more delaminations none of which possess the same properties themselves. Such material
behavior can be readily dealt with at the expense of introducing additional parameters into the
problem; but, because neither the physical principles involved in tbe analysis nor the character
of the results will change, we omit attention to that detail.

Depending on the thickness and number of delaminations relative to the total plate thickness
several further approximations may be considered as illustrated in Fig. 2. In Fig. 2(a), the
unbuckled portion of the plate has been made infinitely thick; this is called the "thin film"
model. A finite thickness (assumed large compared to the delamination) is introduced in the
delamination "thick column" model Fig. 2(b). The case of several delaminations can be
analyzed (Fig. 2c) as well as a· symmetrical split (Fig. 2d). The most general case analyzed in
this report is represented in Fig. 2(e).

The analyses for all these models are delineated in this report. The "tbin film" model is
analyzed first since the results are quite simple and illustrative of the results for the more
complete modelst.

tWe wish to point out that after the typiq of the manuscript we became aware of publi<:ations dealiq with the thin film
problem[l2) as well as delamination of a rin& under Cltternal pressure[l31.
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Fig. I. Idealized delaminated plate.
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Fig. 2. Delamination/buclding models.
•

2. EXAMPLE PROBLEM-"THIN FILM" DELAMINATION

The stages in the "thin film" delamination and buckling are shown in Fig. 3. The delaminated
film of thickness h and length 1is part of an infinitely thick medium, characterized by Young's
modulus, E, and Poisson's ratio II.

Under a compressive strain Eo, the delamination can grow only after the film buckles; In
order for growth to occur, work of rupture is required. This energy must be available either
from work done by the compression forces during the growth of the delamination (fixed load)
and/or from the decrease of strain energy of the system. For the "thin film" delamination the
strain in the backing medium, Eo, remains constant and all the energy available for crack growth
is drawn from changes in stored strain energy caused by changes in the delamination length I.
For this case (fixed grip), it is more convenient to write the "load" in terms of strain, Eo, rather
than in terms of stress.

Consider the three stages i, ii and iii in Fig. 3. State i represents the unstressed medium
while ii denotes the uniformly compressed medium (strain =Eo). State iii ditfers from ii in that
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ii iii

Fig. 3. Thin film model-three configurations.

the delamination has buckled. The conditions for growth of the delamination are determined by
examining the change in stored energy of the system as the delamination spreads. If the elastic
energy loss in that process equals or exceeds the energy required to create a unit of new
delamination, then growth will take place. If growth does take place, it is of interest to examine
whether or not the growth is arrested at a later stage.

The strain necessary to cause buckling, Ecn can be easily calculated if use is made of the
usual assumptions of technical beam/plate theory to yield,

(I)

The post buckled shape of the film can also be calculated assuming that the buckling displacement
remains reasonably small.

1
y =A 2(1 +cos 2'1f'x/l) (2)

The amplitude A is determined by the condition that in going from state ii to iii the length I of
the delaminated section remains unchanged, and the membrane stress in the buckled laminate is
the same as the buckling stress. These conditions lead to

(3)

or

(4)

The strain energy in the buckled layer consists of the membrane energy and the bending
energy. It is given by (on a per unit width basis).

(5)

or

(6)

Next the energy release rate, G, is calculated for the condition that the length of the film
changes from I to I + AI. To distinguish the energy release rate in this example from those
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encountered later on let us affix a subscript "an; then

which can be reduced to

Finally, the strain energy in the laminate corresponding to stage ii is calculated as

Uii=~EhIEl

1073

(7)

(8)

(9)

The history of the strain energy of the thin film delamination can now be considered. There
will be two different cases depending upon the time in the load history at which the
delamination is introduced. The first case considered will be the one in which the delamination
is introduced prior to inception of loading. Next the case ofadelamination introduced while the plate
is under compression load will be considered.

For the first case the strain energy increases quadratically with load (eqn 9) until EO reaches
Eer (Fig. 4). At Eo =Eer the laminate buckles and the strain energy increases in accordance with
eqn (6). This is shown in Fig. 4 where JI has been chosen as OJ for plotting purposes.

Since the stresses at the ends of the delamination (the delamination crack-tip) are con·
sidered to promote further splitting only after buckling has occurred, the question of delamina
tion stability is of interest only for EO> Eer• Thus (8) indicates a positive strain energy release
only for Eo> Eer• Whether further delamination occurs depends, however, on the magnitude of
the fracture energy, r0, which is defined as the energy required to produce a unit of new
delamination.t The dependence of the strain energy release rate, Ga, upon loading and
delamination length (from (8» is plotted in Fig. 5. In order to generalize these results for
arbitrary Poisson's ratio II and fracture energy f o, the following normalizations were employed

Il=fJ{2(~112)}

Et =Eo/{(I- 112rlf~1/2}

1* =I/{hr~-I/"}.

(10)

With the aid of Fig. 5, the history of the delamination as a function of load can be
determined. In this connection there are two values of load Eo (or El) which have special
significance: the first, denoted by EOA. corresponds to the lowest value of strain, for which the
strain energy release rate can equal or exceed fo. Referring to Fig. 5 it is clear that this value is
determined from the dual condition

aG
Ga(l) =f o and 0/ =0

which yields

and the corresponding delamination length

(II)

(12a)

(12b)

fNote lhat a unit delamination generates two units of new fracture surface. If 'Yo is the fracture eneray per unit of new
surface then f o=2'Yo. The maanitude of f o has been measured for T3OO/S208 &raphite epoxy to be 260N/m (l.5lb/in)±
~[8).
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Fig. 4. Strain energy of the delaminated section as II function of load.
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Fig. 5. Thin film model-strain energy release rate.
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The other important strain. denoted by EOB. is the limit beyond which Gil exceeds f oas I ~OO; it
is given by

For this value of the load the strain energy release rate exceeds f o when the delamination
length 1* falls in the range

11< 1* < 00 (/1 =2.221). (14)

By knowing these bounds. the length of the delaminated region can be found as a function of its
initial length 10 and the loading EO' This is illustrated by Fig. 6 for normalized delaminated length
and loading. Suppose the initial delamination length. 10• is such that 13 = 11. then a load Et
increasing from zero will pro'duce no further damage growth until E3 =dA in accordance with
Fig. 6 (see path 1). When Et exceeds EtA stable delamination growth occurs such that for
E3~ E3B. 1*~ co. It is also clear that for I~ > 11 similarly stable growth occurs. though starting at
values of E: larger than EtA (see path 2). Now consider II < I~ < 11 (see path 3). Then no growth
occurs until EW is sufficiently large. corresponding to points Cin Figs. 5and 6. Thereafter unstable
crackgrowth occurs until the delamination reaches a new length corresponding to point i> in Figs. 5
and 6, with only stable growth possible for a further increase in EW. Finally. consider It < II. Then
in accordance with path 4in Fig. 6 no growth occurs until Et reaches a value larger than EtB. from
which the delamination increases unstably to infinite length.

From this type of calculation it is clear that a variety of behavior may be observed during a
test on a delaminated structure. The behavior would be dependent upon the dimension of the
damaged area as well as on the other parameters of the problem.

For the second case let us consider the history of the strain energy if a delamination is
introduced while the structure is under a load such that Eo> Eer• Prior to the introduction of the
delamination the strain energy is given by (9). In Fig. 4. we associate with that strain the point
A. say. Now introduce a delamination. and assume for the present that this process does not
absorb energy from that stored in the system. Next buckling will occur and the new equilibrium
state has a lower energy corresponding to point Bon the branch of the energy trace marked Uiii

in Fig. 4. If the energy state at that instant is such that GA > f ofurther delamination will occur.

10

I
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I
I

____ Unstable I
I

I ®
I
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Pia. 6. Delaminated Ienatb as a function of load.
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However, note that even if the energy release rate at point B in Pig. 4is Dot sufficient to allow

further delamination Jl'owth it may be possible that part of the energy released in the buckling
process. denoted by AU in Fig. 4. contributes to the further fracture process. This possibility
could be reflected in a lowering of the load at which the damage spreads if the delamination is
introduced while the structure is under load. as compared to the case where delamination
already existed p.rior to loading.

3. GENERAL CASE

Having considered the special and simple problem of film delamination let us now turn to
the analysis for the "generaln case (Fig. 2) which is developed along identical lines of reasoning
as the thin film case. The alsebra is more cumbersome and it is necessary to evaluate the energy
release rate numerically. Cylindrical bending of the plate will be assumed along with a plane
strain condition for the membrane stresses. The coordinate systems for the separate parts of
the structure are shown in Fis. 7. Each section is treated as a beam column with compatibility
and equilibrium enforced at the interfaces between sections. The specific conditions are:

Compatibility
Section 1

)'1=~=O at XI =0dx}

,)11 =8. ~dd =6 at XI =II'
XI

Section 2 and 3 (assume symmetry at Xl = 0)

dv,
,)Ii =8,~dI =8 at Xi =-IJ2. i =2,3

XI

Use of these conditions and the solution to the beam column equation produces the fonowing
results:

(15)

where Ii and 6j are given in the Appendix.

I· . @ L -11

..L- B
)'1

'3

Fia. 7. CoordiDale system for general panel problem.
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Equilibrium

At XI ='"Xi =-1/2, ;=2,3

t077

Shear

Axial Force

Moment

SI =S2+S3

PI =P,+P3

h t-h
MI = M2+M3-P'2,+ P32

(16)

(17)

(18)

The shear condition (16) (with the aid of (17» produces a relation between 8 and 8,

Substituting this relation in (15) produces the following result~ for the deflections:

YI =2 8!1 2 (1- cos 2UIXIJiI),
UI SID UI

Yi 2 8~i [cos 2u;rlli - cos 2u/{cos uiB, ; =2, 3
U,SID U,

(19)

where u, =(112)V(PIDi ), ; =1,2,3, are the normalized total loads and D, =(Btl/12(1-.,l» are
the stiffness rigidities of the separate sections.

The remaining conditions necessary for a solution involve the overall shortening of the
plate. Assume that during the transition from state ii to state ill the ends remain fixed (i.e. overall
shortening is toL). This produces the conditions essentially analogous to (3), namely

(20)

(21)

where E, is the midsurface strain in the ";th" segment and is related to the axial load P,. The
membrane stresses and strains are given by (plane strain assumption)

(O'x)' =(1 ~JI2) (p2
€o - Ell, (O',)i =(1 ~Pp2) (Eo - Ei),

(E, ), =JIEo, (Ex), a; - Ei'; =1,2,3.

The strain energy in the system is then calculated as

(22)

Consider now E" E2' E3 and 8 as the desired unknown quantities with load and section
parameters specified. Combining eqn (19) with (17), (18), (20) and (21) produces four equations
in the four unknowns. The nondimensional versions of these equations are given in the
Appendix along with the energy.

The system of equations (Al)-(A4) in the Appendix cannot be solved in closed form and a
numerical iterative scheme is employed. In order to start the iteration, an initial guess to the
solution is required. The subject of finding such an initial guess is considered next.
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Numerical solution
Let U3 represent the normalized load for Section 3 as defined in the nomenclature. Starting

from the observation that for 8 =0 the post buckling normalized axial load U3 is given by
U3 =17', let us examine the equilibrium position for the more general case 9¢ O. Figure 8 shows
the axial load deflection curve for specific values of 9 as obtained from (19). Denote Y3(0)-8 by
A3 as in Fig. 8; then the third of (19; i =3) yields

A
3
=138(1- ~os U3).

2U3 SID U3
(23)

In the lower part of this figure, 113 < 17' (A3>0); this case corresponds to a closing of the
delamination against Section 2 and is, therefore, of no current interest. Focusing attention on
113 > 17', it is seen in Fig. 8 that for a given section geometry 113 decreases with decreasing 8,
approaching the Euler buckling load (U3 =17') as 8-+0. We shall make use of this observation
later on. For the general case 8~ 0, let

113 = 17' +11, 0 < ." < 17'. (24)

Substitution of (24) in the equations determining fit f2. f3 and 8 (see eqns (AI) to (A4) in the
appendix) and the third of (AS) in the appendix, results in eight equations with eight unknowns

i l =[(1- h)io+hli30J/1C +elt III =17'(1- T)[(i, - p2i o)(l- p2)]112/2

i 2 = [io- h(1- f)i3OJ/IC+ e2. "2= 17'f[(i2- p2i o)/(1- p2)]I12/(1- h)

i 3 =i 3
0+ e3, i 3

0 =(1- p2)icr + p2io

- -2 (25)
- (1:h) [eUl~) -{u2(l-h)F ]-217'2Ji3[(io-ier+Q.)/31C]1I2(1 +a2)

0= I I-I
[i](I- f)J2u./tan 211, +(1- h)31l2/tan Us

11 =O[(io- i er +QI)417'2/3ICr Il2

-10 -5 0 5
Deflection, A3/11

Fia. 8. Equilibrium position of Section 3.

10



Laminated plates by delamination buckling 1079

where terms defined in the listing of the nomenclature are used. Also K = I - h+hi and the
quantities e.. e2' el' o. and 02 are given in the appendix. Let us seek a first approximation to
the solution by assuming that 8 is small (8 ~ I). This implies (from the discussion of Fig. 8) that
." is also small, from which it follows that the quantities, e.. e2, el' a. and a2 are small.

By temporarily assuming zero values for these quantities an initial solution to the set (25)
can now be calculated, which, in turn, allows the calculation of the quantities elo e2, el' al and
a2' Successive iterations can now be carried out (about five) until sufficient convergence is
achieved.

Next, the strain energy is calculated from (A6) from which, by means of simple numerical
differentiation, the strain energy release rate can be found.

The results obtained in this manner are shown in Fig. 9, where the non-dimensionalized
strain energy release rate G, for "model e" of Fig. 2 is plotted as a function of the crack length
for several loadings and section dimension. Consider a typical curve in Fig. 9 which cor·
responds to a fixed load ratio, Eo, and examine the characteristic behavior of G, with crack
length ratio r. G, is nonzero (positive) only when r> icr where icr is the critical buckling length
given by rcr =htV(Eo). G, increases rapidly with delamination length reaching a maximum at
IlL = ~•. Its minimum occurs at IlL =~••. The difference between the minimum G, (~••) and
maximum G, (~.) is more striking for this case than that for the thin film case. This is
significant in that these values dictate the region of stable delamination growth as shown in the
discussion of Figs. 5 and 6.

A great simplification in the general problem just treated can be achieved by neglecting
bending contributions of the sections' structure other than section 3, i.e. by assuming 8 == O.
This leads to model b (Fig. 2b). The condition 8 =0 implies el =e2 =el =a, =02 =." =0 in (25),
(while .,,18 is finite). By substituting the reduced results of (25) in (A6) while taking the limit as
Ul -+ 11 we find:

(26)

The strain energy release rate, G., is given by (G. =- aUla/). Thus

(27)

(29)

Generalization of this model with n (integer) delaminations results in model 2c, the analysis of
which is identical to that of model 2b if h is replaced by nh (while leaving Ecr unchanged). Thus,
from (27)

The symmetric split (model d) is a particular case of model 2c with n =2, h=0.5 (nh -+ I). This
gives

Finally, it is pointed out that the "thin film" model (model a) treated earlier is a further
simplification of the general case over case b with h=hit -+ 0

Thus Gil =h lim (GJh)
ii~

where Gil and G. are given in (8) and (27) respectively.
Three of the models are compared in Fig. 9. It can be seen there that the "thick beam"

model is not a great improvement over the "thin film" model. The range of applicability of the
"thin film" model can be established by comparing measures such as the maximum value of
energy release rate. This is done in Fig. 10 up to a delamination thickness ratio of 0.10. Over
this range the error between the two models is montonic with hit and load (Eo!ELl. For larger
values of hIt the comparison becomes more complicated due to the large shifts in the position
of the maximum energy release rate.
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Fig. 10. Relative difference between thin film and general model as a function of the controlling parameters.

4. SUMMARY AND CONCLUSIONS

The models of delamination buckling and growth introduced in this paper display an
interesting variety of behavior depending upon the dimensions of the delamination, the load at
which it is introduced and the fracture energy. When loading an initially delaminated structure,
the growth of the delamination may be stable, unstable or an unstable growth followed by a
stable growth. The range of this behavior can be found from the results presented and could
form the base for an experimental study of the applicability of the proposed model.

The solution of the case when the delamination is introduced in a preloaded structure awaits
the resolution of the problem of the excess energy released in going from the unbuckled to the
buckled state. However, the model does show the magnitude of this excess energy which can
participate in the fracture process. This energy excess would lower the "load" necessary to
initiate growth. This finding is consistent with experimental evidence [6] but quantitative
comparison of the present analysis with impact experiments is not very meaningful because the
present analog study is hardly capable of dealing with the details of the complex dynamic
process of delamination growth in an impacted plate.

The "general" model considered here for the delamination buckling and growth is useful in
establishing the range of validity of the simplified models (e.g. "thin film" case). This is
important in that an extension of the model to two dimensions (growth in both the longitudinal
and transverse directions) is very difficult for the analog of the present "general" model but
tractable for the "thin film" case.
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APPENDIX
The II and II in eqn (15) are as follows:

'1(.1) = 2(1- uII/tan UI) (sin 2u/xd/l- 2u,.l:1111)/tan III +2 sln2 u,xllll)

1·fI(xl=-2~ (cos 2lijXJll-COS 11;)
III Sill II;

gl(X) = I, i=2,3

1l1=~V(PJ~), i=1.2,3.

The nondimensional equations for" and 11 are

{
3hi+3iJ [0- T)(4u, - Si1l4uI)+ f(2112 - sin 2li1)]}
? s;? 2ulsln':!ul 1l2sin'U2

+(I ~;.»[il-io+ i(i2-il}}=O

iT[-Lr 2udtan 2u, +(1- hjluJtan U2+ iiJu;Jtan u3]
(1- )

+(1_ h'l{[ 2UI~]2 -[(1- h)1l211}=0
(I-I)

ill =11(1- 1)V«(lI- s?io)/U- 11
2»/21

112 = 1r~V«i2- v1iol!(I- s?})!(~ - h)
U3" 1rlV«i] - l/liol/(I- l/~)/h.

(AI)

(M)

(Al)

(A4)

(AS)
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Tbe nolldimensional strain eoel'lY is as follows;

U/{ET'L-3(1_ ,2r'} = 0'
c

0' = 18(1~'" ((1- f>i,2 +(1- h)[i/+ iiiiJ2+,210(10- 21.)]

+~ [ 2 _ 11,(411, +sin 411,)+(1- hf 1Iz{211z +sin 211V

24 (I - /) sin2 2111 [ sinz11%

+ ijJ "J(2IJ +sin 2111)]
T Sin2 113

Tbe ", i = 1,2.3; Q. and 41% in eqn (25) are as follows;

'I = - ((1- ,,2)(1_ h)tll - iii'31}"
'% = - ((1- ~al+h(l- n'J]/1(

'3 = 2(1- ~)i.,("''Ir+T1212~)

41, • a21( - (11- ,J(I- ~-J!; ( .i )2[1_ (Sin '1)% _ sin 2, ]
4".- smT1 'I 2(11'+ 'I)

412 =h"tan '1). (I +,,/1,)-1

Wbere (I I and 4'2 are liven by the curley bracket of eqns (A2) and (A3) respectively aDd 1(. 1- Ii+ hT.
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